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Abstract

In this paper, the generalized two-dimensional problem of collinear interfacial cracks, between two dissimilar
piezoelectric media subjected to piecewise uniform loads at in®nity, is studied by means of the Stroh formalism. It is

di�erent from the relevant analysis done by other authors that in the present work, cracks are considered to be
traction-free, but permeable slits across which both the normal component of the electric displacement and the
tangential component of the electric ®eld are continuous, and thus avoiding the common assumption of electric

impermeability. According to the above continuous conditions combined with the principle of analytical
continuation, the considered problem is reduced to a Hilbert problem. Explicit, closed-form expressions for the
electric ®eld inside cracks, complex potentials in piezoelectric media and ®eld intensity factors near the crack tips are

obtained. These results show that the electric ®eld inside cracks is dependent on the material constants and the
applied loads. It is also shown that all the ®eld singularities are dependent only on the applied mechanical loads,
not on the applied electric loads, which is di�erent from those results based on impermeable crack model. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

With increasingly wide application of piezoelectric composite materials in the engineering, the study

on the interfacial crack problem in piezoelectric media has received much interest. Suo et al. (1992)

analyzed the generalized two-dimensional problem of collinear interfacial cracks between two dissimilar

piezoelectric media in terms of Stroh formalism, and gave the structure of singular ®elds near the crack

tips. However, it should be noted that their studies are based on the impermeable crack model, i.e., a
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crack is assumed to be a thin cut with impermeable faces, and thus the electric ®eld inside the crack is
neglected. This is the so-called impermeable crack assumption, which was widely used to investigate the
crack problem in piezoelectric media to simplify analysis, see, for example, the work of Pak (1990,
1992), Sosa and Pak (1990), Sosa (1992), Wang (1992), Park and Sun (1995), Gao and Barnett (1996),
Qin and Yu (1997), Zhong and Meguid (1997a, 1997b). In fact, cracks in the engineering are usually
®lled with air or vacuum, and the electric ®eld inside cracks is a non-zero unknown quantity. Hence, as
pointed out by McMeeking (1989), Pak and Tobin (1993), Dunn (1994), Sosa and Khutoryansky (1996),
Kogan et al. (1996), Zhang et al. (1998), Gao and Fan (1998, 1999a), the impermeable crack assumption
will lead to erroneous results. Recently, Beom and Atluri (1996) further addressed the interfacial crack
problem in piezoelectric materials. They introduced a matrix function with which the intensity factors
can be easily determined without solving the complicated eigenvalue problem. But it should be seen that
Beom and Atluri's work is also based on the impermeable crack assumption. More recently, Shen and
Kuang (1998) investigated the piezothermoelastic problem of collinear interfacial cracks between two
half-in®nite piezoelectric solids. In their study, the media are assumed to be subject to known loads of
traction and electric displacement only along the crack faces, and as a result the crack-tip ®elds are
obtained. However, in the engineering, one is often more interested in the full domain solutions of
piezoelectric media loaded remotely. It is well known that the case of remote loading can be readily
reduced to the case of crack-face loading by using the superposition principle, if the considered media
are purely elastic. But it is not easy to do this if the media are piezoelectric. When the piezoelectric
medium with a crack is loaded at in®nity, the electric ®eld exists inside the crack, and therefore the
crack has to be considered as an `electric inclusion'. This means that one has to overcome the di�culty
to determine the electric ®eld inside the crack. Otherwise, the electric displacement on the crack faces
can not be known.

Similar to the crack problems in piezoelectric media, the problem of rigid line inclusions (sometimes
called as hard cracks or inverse cracks) has also received much attention. For example, recently, Deng
and Meguid (1998) addressed the generalized two-dimensional problem of an interfacial rigid line
inclusion at the interface of two dissimilar piezoelectric materials. In their analysis, the inclusion is
assumed as a conductor and thus the analysis process is simpli®ed, since the electric ®eld inside the
inclusion can be considered to be zero. In fact, the interfacial inclusion, which results during electric
packaging and manufacturing of intelligent composites, is usually a dielectric (Gao and Fan, 1999b).

It is the purpose of this study to investigate the generalized two-dimensional problem of interfacial
cracks between two dissimilar piezoelectric half-spaces. One of the novel features in this paper is that the
cracks are treated as permeable thin cuts across which both the normal component of the electric
displacement and the tangential component of the electric ®eld are continuous. The other novel feature
is that the piezoelectric media are loaded at in®nity, other than along the interfaces. The whole content
consists of ®ve sections. Following this brief introduction, Section 2 outlines the Stroh formalism to be
needed in this paper, and then for two cases, we give the expressions for the electric ®eld inside cracks,
complex potentials in piezoelectric media and ®eld intensity factors near the crack-tips, respectively, in
Sections 3 and 4. The conclusions on the present work are drawn out in Section 5. In addition, the
loading condition at in®nity is formulated in Appendix A.

2. Stroh formalism

Consider a piezoelectric solid in a Cartesian system xj ( j = 1, 2, 3). Assuming that the displacement
uj and electric potential j of the solid are dependent on x1 and x2 only, then the general solution for the
generalized two-dimensional problem can be expressed as (Suo et al., 1992):
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u � Af�z� � Af�z� �1�

f � Bf�z� � Bf�z� �2�
with

u � �u1, u2, u3, j�T, f � �f1, f2, f3, f4

�T
f�z� � �f1�z1 �, f2�z2�, f3�z3�, f4�z4��T, zk � x1 � pkx2, �k � 1, . . . ,4�

In the above equations, the superscript T represents the transpose; the overbar stands for the conjugate
of a complex number; A and B are two 4 � 4 matrices which can be determined from the material
constants; fk�zk� are complex potentials to be found; u and f denote generalized displacement function
vector and stress function vector, respectively; pk (k = 1, . . . ,4) are the complex eigenvalues with positive
imaginary parts; In this paper we assume that pk are distinct. For this case, A and B are nonsingular,
and there is the following orthogonality relation (Chung and Ting, 1996):�

BT AT

ÅB
T ÅA

T

��
A ÅA
B ÅB

�
�
�

I 0
0 I

�
�3�

where I is the 4� 4 unit matrix.
Once f(z ) is obtained according to the given boundary conditions, the stress sjl, electric displacement

Dl and electric ®eld El can be given, respectively, by

sj1 � ÿfj, 2, sj2 � fj, 1, �j � 1, 2, 3� �4�

D1 � ÿf4, 2, D2 � f4, 1, E1 � ÿu4, 1, E2 � ÿu4, 2 �5�
where a comma indicates partial di�erentiation. It should be noted that the one-complex-variable
approach introduced by Suo (1990) is used in this paper. After the solution of f(z ) is obtained, one
should substitute z1, z2, z3 or z4 for each component function of f(z ) to calculate ®eld quantities.

3. Interface cracks: non-oscillatory ®elds

Consider two dissimilar piezoelectric solids, one located in the upper half space V1, and the other in
the lower half space V2, as shown in Fig. 1. The N interface cracks ln � anbn (n = 1, 2, . . .N ) lie on the
real axis x1, and the union of the cracks and uncracked part in the x1-axis are denoted by Lc and Lb,
respectively. Moreover, it is assumed that the cracks are traction-free, but permeable slits ®lled with air
or vacuum, while the upper and lower half-spaces are subjected to piecewise uniform loads at in®nity
and coexist in the state of generalized two dimensional deformation. The relation between the remote
loads is given in Appendix A of this paper.

For this problem, the boundary conditions on the crack faces can be written as

s�2j � sÿ2j � 0 �j � 1, 2, 3� on Lc �6�

D�2 � Dÿ2 , E
�
1 � E ÿ1 on Lc �7�
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On the bonded part, the continuous condition requires

s�2j � sÿ2j , u
�
j � uÿj , �j � 1, 2, 3� on Lb �8�

D�2 � Dÿ2 , E
�
1 � E ÿ1 on Lb �9�

Summarizing Eqs. (6)±(9), the above boundary conditions can be rearranged as

s�2j � 0, �j � 1, 2, 3� on Lc �10�

s�2j � sÿ2j , D
�
2 � Dÿ2 , ÿ1 < x1 <1 �11�

E �1 � E ÿ1 , ÿ1 < x1 <1 �12�

u�j, 1 � uÿj, 1 on Lb �13�

where uj; 1 � @uj=@x1: The main task of the present work is to determine the complex potentials
satisfying Eqs. (10)±(13).

For later use, de®ne two vectors as

f, 1 � �s21, s22, s23, D2�T, u, 1 � �u1, 1, u2, 1, u3, 1, u4, 1�T �14�

Fig. 1. Collinear cracks between two piezoelectric materials loaded at in®nity.
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where

u1, 1 � @u1
@x1
� e11, u2, 1 � @u2

@x1
� 1

2

�
@u2
@x1
� @u1
@x2

�
� 1

2

�
@u2
@x1
ÿ @u1
@x2

�
� e12 � o3,

u3, 1 � @u3
@x1
� @u3
@x1
� @u1
@x3
� 2e13, u4, 1 � @u4

@x1
� ÿE1

�15�

In Eq. (15), e11, e12 and e13 are strain components, respectively; o3 denotes rotation. On the other hand,
one has from Eqs. (1) and (2) that

u, 1 � AF�z� � AF�z� �16�

f, 1 � BF�z� � BF�z� �17�

where F�z� � df�z�=dz:
For the considered problem, F(z ) can be expressed, in the upper and lower spaces, as

Fl�z� � C1l � Fl0�z� �l � 1, 2� �18�
where Fl0(z ) is a function vector in V1 (l = 1) or V2 (l = 2), and Fl0�1� � 0; C1l is a constant vector to
be determined by the loading condition at in®nity.

Substituting Eq. (18) into (16) and (17), and then take the limit z41 results in

AlC
1
l � ÅAl

ÅC
1
l � e1l �19�

BlC
1
l � ÅBl

ÅC
1
l � s1l �20�

where

e1l �
ÿ
e111, e

1
12 � o13 , 2e113, ÿ E11

�T

l
�21�

s1l �
ÿ
s121, s

1
22, s

1
23, D

1
2

�T

l
�22�

Eqs. (19) and (20) can be rewritten as�
A ÅA
B ÅB

�
l

(
C1l
ÅC
1
l

)
�
�
e1l
s1l

�
�23�

Using Eq. (3), one has from Eq. (23) that(
C1l
ÅC
1
l

)
�
�

BT AT

ÅB
T ÅA

T

�
l

�
e1l
s1l

�
�24�

Eq. (24) gives

C1l � BT
l e
1
l � AT

l s
1
l �25�

To determine the complete form of Fl�z�, one has to use Eqs. (10)±(13). On x1, (11) requires
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B1F1�x1� � �B1F1�x1 � � B2F2�x1� � ÅB2F2�x1 �, ÿ1 < x1 < �1 �26�
De®ne a new analytical function as:

J�z� � f B1F1�z� ÿ ÅB2F2�z�, z 2 V1

B2F2�z� ÿ ÅB1F1�z�, z 2 V2
�27�

Then, Eq. (26) can be reduced to

J��x1� ÿ Jÿ�x1 � � 0 ÿ1 < x1 < �1 �28�
The solution of Eq. (28) is given (Muskhelishvili, 1975) by

J�z� � J�1� � F1 �29�
where

F1 � B1C11 ÿ ÅB2
�C
1
2 �30�

or

F1 � B2C12 ÿ ÅB1
�C
1
1 �31�

Inserting Eq. (25) into (30) produces

F1 � B1BT
1 e
1
1 ÿ B2B

T
2 e
1
2 �

�
B1A

T
1 ÿ ÅB2

ÅA
T

2

�
s12 �32�

In addition, one can obtain from Eqs. (30) and (31) that

2F1 �
h
B1C

1
1 ÿ B1C

1
1

i
�
h
B2C12 ÿ B2C

1
2

i
�33�

Eq. (33) shows that F1 is pure imaginary.
Eqs. (27) and (29) lead to

B1F1�z� ÿ ÅB2F2�z� � F1, z 2 V1 �34�

B2F2�z� ÿ ÅB1F1�z� � F1, z 2 V2 �35�
Introduce two auxiliary functions:

DU�x1� � u1, 1�x1� ÿ u2, 1�x1�

�
h
A1F1�x1� � ÅA1F1�x1�

i
ÿ
h
A2F2�x1 � � ÅA2F2�x1 �

i
�36�

T�x1 � � B1F1�x1� � ÅB1F1�x1 � �37�
Then, using Eqs. (34) and (35), Eq. (36) reduces to

iDU�x1� � H
h
B1F1�x1� ÿHÿ1 ÅHB2F2�x1 � ÿHÿ1

ÿ
ÅY2 ÿ ÅY1

�
F1

i
�38�
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where

Y1 � iA1B
ÿ1
1 , Y2 � iA2B

ÿ1
2 , H � Y1 � ÅY2 �39�

By de®ning

K�z� � f B1F1�z�
Hÿ1 ÅHB2F2�z� �Hÿ1

ÿ
ÅY2 ÿ ÅY1

�
F1 ,

z 2 V1

z 2 V2
�40�

Eq. (38) can be expressed as

iDU�x1� � H
�
K��x1 � ÿKÿ�x1�

� �41�

Noting that (12) and (13) imply DU�x1� � 0 on Lb, and therefore, (41) shows that K(z ) is analytic in the
entire z-plane except on Lc.

Moreover, the continuous condition of E1 on the x1-axis, i.e., (12), requires

H4

�
K��x1� ÿKÿ�x1�

� � 0, ÿ1 < x1 <1 �42�

where

H4 � �H41, H42, H43, H44 � �43�
The solution of (42) is

H4K�z� � H4K�1� �44�
Eq. (44) gives

K4�z� � ÿ 1

H44

X3
j�1

H4jKj�z� � 1

H44
H4K�1� �45�

Similarly, by using Eqs. (34) and (35), one has from (37) that

T�x1 � � K��x1� � ÅH
ÿ1

HKÿ�x1� ÿ ÅH
ÿ1ÿ

Y2 � ÅY2

�
F1, ÿ1 < x1 < �1 �46�

On the bonded part, K�x1� is analytic, and thus Eq. (46) becomes

T�x1 � �
ÿ
I� ÅH

ÿ1
H
�
K�x1� ÿK0, x1 2 Lb �47�

where

K0 � ÅH
ÿ1ÿ

Y2 � ÅY2

�
F1

On the crack faces, one has T�x1� � i4D2�x1�, where i4 = (0, 0, 0, 1)T and D2�x1� is an unknown
function which indicates the boundary value of D2�z� on the crack faces. Hence, Eq. (47) reduces

K��x1� � ÅH
ÿ1

HKÿ�x1� � K0 � i4D2�x1�, x1 2 Lc �48�
Obviously once one obtains K(z ) from Eqs. (48) and (44), F1(z ) and F2(z ) can be given by using (40),
and then all the ®eld solutions can be determined without di�culty.

First let us examine a special case when H is real. For this case (48) degenerates into

C.-F. Gao, M.-Z. Wang / International Journal of Solids and Structures 37 (2000) 4969±4986 4975



K��x1� �Kÿ�x1� � K0 � i4D2�x1�, x1 2 Lc �49�
in which K0 is a pure imaginary vector.

Following Muskhelishvili (1975) and noting that D2(z ) is a bounded function at in®nity (i.e.,
D2�1� � D12 ), it can be shown that the solution of Eq. (49) is

K�z� � 1

2

�
K0 � i4D2�z�

�� X�z�P�z� �50�

where

X�z� �
YN
n�1
�zÿ an�

ÿ
1

2 �zÿ bn�
ÿ
1

2 �51�

P�z� � cNz
N � cNÿ1zNÿ1 � � � � � c0 �52�

cn �
h
c�1�n , c�2�n , c�3�n , c�4�n

iT

�n � N, Nÿ 1, . . . ,0� �53�

In Eq. (50), D2(z ) and the constant vectors cn contained in P(z ) are unknown. To ®nd D2(z ), inserting
(50) into (44) produces

D2�z� � 1

H44
H4

�
2K�1� ÿK0

�ÿ 2X�z�H4P�z� �54�

On the other hand, letting x141 in (47) leads to

2K�1� ÿK0 � s12 �55�
where

s12 �
ÿ
s121, s

1
22, s

1
23, D

1
2

�T

Substituting (55) into (54) gives

D2�z� � D12 �
1

H44

X3
j�1

H4js12j ÿ 2X�z�H4P�z� �56�

Furthermore, let us determine cn. Taking the limit z41 in (50) yields

K�1� � 1

2

�
K0 � i4D

1
2

�� cN �57�

Substituting Eq. (57) into (55) leads to

cN � 1

2
s1M �58�

where s1M is a constant vector dependent only on the mechanical loads at in®nity, such that

s1M �
ÿ
s121, s

1
22, s

1
23, 0

�T �59�
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To ®nd the remaining unknown constants cn, (n = �Nÿ 1, . . . ,0� in Eq. (52), one must use the single-
valued conditions of displacement and electric potential. Considering (41), these conditions require�

Gn

K�z� dz � 0 �1, 2, . . . ,N� �60�

where Gn is a clockwise closed-contour encircled the crack ln:
Substituting (50) into (60), and then using

�
Gn
D2�z� dz � 0 (since the total net charge on the cracks is

zero), one obtains�
Gn

X�z�P�z� dz � 0 �61�

It can be found, from Eq. (61) together with Eq. (58), that all the coe�cients in Eq. (52) are real, and
they depend only on the applied mechanical loads and the size of cracks, but on the applied electric
loads.

On the other hand, to determine the electric ®eld inside cracks, letting z � x�1 and z � x ÿ1 in Eq. (56),
respectively, one has

D0
2

ÿ
x�1
� � D12 �

1

H44

X3
j�1

H4js12j ÿ 2X
ÿ
x�1
�
H4P

ÿ
x�1
� �62�

D0
2�x ÿ1 � � D12 �

1

H44

X3
j�1

H4js12j ÿ 2X�x ÿ1 �H4P�x ÿ1 � �63�

Since D0
2�x�1 � � D0

2�x ÿ1 �, P�x�1 � � P�x ÿ1 � and X�x�1 � � ÿX�x ÿ1 � on the crack faces, Eqs. (62) and (63)
leads to

D0
2�x1� � D12 �

1

H44

X3
j�1

H4js12j �64�

Eq. (64) shows that D0
2 equals a constant inside any crack.

Using Eq. (64), the component of electric ®eld in the x2-axis direction can be expressed as

E 0
2 �

D12
e0
� 1

e0H44

X3
j�1

H4js12j �65�

where e0 is the dielectric constant of air.
After the above unknowns are determined, one can obtain the complete solutions of the complex

potentials, and then can ®nally give the expression of E1�z� at arbitrary position, including that on the
crack face. Thus, E 0

1�x1� can be determined. It can be shown that E 0
1�x1� is in general not constant

inside the crack, and it exhibits the classical square root singularity as x1 approaches the crack tips from
on the crack faces.

At the right tip of any crack ln, the ®eld intensity factor vector k�bn� can be expressed as

k�bn � � lim
x 14bn

������
2p
p
�x1 ÿ bn�1=2T�x1� �66�
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Substituting (47) into (66) results in

k�bn � � 2
������
2p
p

lim
x 14bn

�x1 ÿ bn�1=2K�x1� �67�

From (67), the stress intensity factor kj�bn� ( j = 1, 2, 3) and the intensity factor of electric displacement
k4�bn� can be expressed, respectively, as

kj�bn� � 2
������
2p
p

lim
x 14bn

�x1 ÿ bn�1=2Kj�x1 �, �j � 1, 2, 3� �68�

k4�bn� � 2
������
2p
p

lim
x 14bn

�x1 ÿ bn�1=2K4�x1� �69�

Inserting Eqs. (50) and (45) into Eqs. (68) and (69) gives

kj�bn� � 2
������
2p
p

lim
x 14bn

�x1 ÿ bn�1=2X�x1�P �j��x1� �j � 1, 2, 3� �70�

k4�bn� � ÿ 1

H44
ÿ
X3
j�1

H4jkj�bn� �71�

Eq. (71) shows that the singularity of electric displacement depends on that of the stresses, while Eq.
(70) together with (52) indicates that the stress intensity factor is related to cn �n � N, Nÿ 1, . . . ,0�: One
can ®nd from Eqs. (61) and (58) that cn are dependent on the applied mechanical loads and crack size,
but not on the applied electric loads and the material constants. This means that the stress intensity
factor is identical to that of the corresponding isotropic material. Thus, Eqs. (70) and (71) imply also
that the applied electric loads have no in¯uence on all the ®eld singularities.

For the case of a homogeneous piezoelectric medium, when D12 is applied solely at in®nity, Eqs. (58),
(61) and (56) provide cn � 0 and D2�z� � D12 , and therefore (50) becomes

K�z� � 1

2

�
K0 � i4D

1
2

� �72�

Since K0 is pure imaginary vector, Eq. (72) indicates that in this case, the stress in the piezoelectric
medium is zero, while D2 � D0

2 � D12 : Similar results are also found by Kogan et al. (1996) and Gao
and Fan (1999a), who respectively studied the problems of a penny-shaped crack and a straight-line
crack in a transversely isotropic material using exact boundary conditions. On the other hand, if taking
a dielectric medium as a special case of a piezoelectric medium, one can immediately write the
corresponding solutions of the dielectric medium with cracks according to the above result. For a case
of a crack in the dielectric material subjected to uniform electric loads at in®nity, it can be con®rmed
that the result produced from the current work is the same as that of Wangsness (1979). However, for
this case if the impermeable assumption is used, one can ®nd, from the work of Suo et al. (1992) and
Park and Sun (1995), that D2 is singular near the crack tips.

4. Interface cracks: oscillatory ®elds

In this section we examine the general case when H is complex. For the sake of convenience, it is
assumed that eigenvalues of ÅH

ÿ1
H is of the form ÿeÿ2pida
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da � ÿ1
2
� iea �73�

According to the de®nition of eigenvalues, one has

k ÿ eÿ2pidaIÿ ÅH
ÿ1

Hk � 0 �74�
Noting

ÿ2pida � ÿ2pi
�
ÿ 1

2
� iea

�
� pi� 2pea �75�

we have

ÿeÿ2pida � e2pea �76�
Thus, Eq. (74) reduces to

kHÿ e 2pea ÅHk � 0 �77�
Following the work of Suo et al. (1992), (77) results in

e1 � e, e2 � ÿe, e3 � ÿik, e4 � ik �78�
where

e � 1

p
tanhÿ1

�
�b2 ÿ c2�1=2ÿb

�1=2

k � 1

p
tanhÿ1

h
�b2 ÿ c2�

1
2�b

i1=2

b � 1

4
tr
�
�Dÿ1W�2

�
c � kDÿ1Wk

D� iW � H

Letting Q be the eigenvector matrix of ÅH
ÿ1

H, one has

Qÿ1 ÅH
ÿ1

HQ � L, L � hhÿeÿ2pidaii � hhe2peaii �79�
where the angular hh ii indicates the diagonal matrix in which each component is varied according to the
Greek index a:

Multiplying both sides of (48) by Qÿ1 leads toh
Qÿ1K�x1�

i�
�Qÿ1 ÅH

ÿ1
HQ

h
Qÿ1K�x1�

iÿ
� Qÿ1

�
K0 � i4D2�x1�

� �80�

Letting
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Qÿ1K�z� � R�z� �81�

Qÿ1
�
K0 � i4D2�x1�

� � R0�z� �82�

and considering Eq. (79), Eq. (80) can be reduced to

R��x1 � � LRÿ�x1� � R0�x1� �83�
Expanding (83), one obtains

R�a �x1 � ÿ eÿ2pidaRÿa �x1� � R0
a�x1� �a � 1, . . . ,4� �84�

Following Muskhelishvili (1975), the solution of (84) is given by

Ra�z� � X a
0�z�
2pi

�
L

R0
a�x1 �dx1

X a
0�x1��x1 ÿ z� � X a

0�z�P�a�z� �85�

where P�a�z� is an N degree polynomial, and

X a
0�z� �

YN
j�1
�zÿ aj �ÿga�zÿ aj �gaÿ1 �86�

ga �
1

2pi
ln ga, ga � eÿ2pida �87�

Using the following identities:

ga � ÿda, da � ÿ
1

2
� iea, 1� da � 1

2
� iea �88�

Eq. (86) can be rewritten as

X a
0�z� �

YN
j�1

�
zÿ aj
zÿ bj

�iea

�������������������������������
�zÿ aj �

ÿ
zÿ bj

�q �89�

It can be shown that (85) can be ®nally reduced to

Ra�z� � 1

1� e2pea
Ra

0�z� � X a
0�z�Pa�z� �90�

where Pa�z� is a new N polynomial:

Pa�z� � c
�a�
N zN � c

�a�
Nÿ1z

Nÿ1 � � � � � c
�a�
0 �91�

On the other hand, (90) can be rewritten in the vector form as

R�z� � hh 1

1� e2pea
iiR0�z� � hhX a

0�z�iiP�z� �92�

where P�z� is given by (52).
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Considering Eqs. (81) and (82), Eq. (92) gives

K�z� � Qhh 1

1� e2pea
iiQÿ1�K0 � i4D2�z�

��QhhX a
0�z�iiP�z� �93�

To ®nd the expression of D2�z� in (93), inserting (93) into (44) yields

D2�z� � 1

CD
H4

�
K�1� ÿQhh 1

1� e2pea
iiQÿ1K0

�
ÿ 1

CD
H4QhhX a

0�z�iiP�z� �94�

where

CD � H4Qhh 1

1� e2pea
iiQÿ1i4 �95�

Taking the limit as x141 in Eq. (47) producesÿ
I� ÅH

ÿ1
H
�
K�1� ÿK0 � s12 �96�

Multiplying both sides of Eq. (96) by Qÿ1 leads to

Qÿ1
ÿ
I� ÅH

ÿ1
H
�
QQÿ1K�1� � Qÿ1

ÿ
K0 � s12

� �97�

Using Eq. (79), Eq. (97) becomes

hh1� e2peaiiQÿ1K�1� � Qÿ1
ÿ
K0 � s12

� �98�

From Eq. (98), one obtains

K�1� � Qhh 1

1� e2pea
iiQÿ1ÿK0 � s12

� �99�

Inserting Eq. (99) into (94), we obtain the ®nal expression of electric displacement as

D2�z� � 1

CD
H4Qhh 1

1� e2pea
iiQÿ1s12 ÿ

1

CD
H4QhhX a

0�z�iiP�z� �100�

In addition, taking the limit as z41 in Eq. (93) yields

K�1� � Qhh 1

1� e2pea
iiQÿ1�K0 � i4D

1
2

��QcN �101�

Inserting Eq. (99) into (101), we have

cN � hh 1

1� e2pea
iiQÿ1s1M �102�

Eq. (102) together with (59) shows that cN is still independent of the applied electric loads.
To ®nd the remaining coe�cients cn �n � Nÿ 1, Nÿ 2, . . . ,0�, substituting Eq. (93) into (60) gives�

Gn

QhhX a
0�z�iiP�z� dz � 0 �103�

Since Q is not singular, Eq. (103) can be simpli®ed to
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�
Gn

hhX a
0�z�iiP�z� dz � 0 �104�

Below let us study the electric ®eld inside cracks. In Eq. (100), letting z equal x�1 and x ÿ1 , respectively,
one has

D0
2

ÿ
x�1
� � 1

CD
H4Qhh 1

1� e2pea
iiQÿ1s12 ÿ

1

CD
H4QhhX a

0

ÿ
x�1
�iiPÿx�1 � �105�

D0
2�x ÿ1 � �

1

CD
H4Qhh 1

1� e2pea
iiQÿ1s12 ÿ

1

CD
H4QhhX a

0�x ÿ1 �iiP�x ÿ1 � �106�

Using the following relations

D0
2

ÿ
x�1
� � D0

2�x ÿ1 �, P
ÿ
x�1
� � P�x ÿ1 �, X a

0�x ÿ1 � � ÿeÿ2peaX a
0

ÿ
x�1
� �107�

one obtains from Eqs. (105) and (106) that

D0
2�x1� � 1

CD
H4Qhh 1

1� e2pea
iiQÿ1s12 ÿ

1

2CD
H4Qhhe

2pea ÿ 1

e2pea
iihhX a

0

ÿ
x�1
�iiP�x1� �108�

For the general cases, ea 6�0, and thus the second term in the right-hand-side of Eq. (108) is not equal to
zero. This means that D0

2�x1� varies inside cracks, and moreover it is singular and oscillatory as x1
approaches the crack tips from on the crack faces. Similar nature can also be found for E 0

1�x1�:
Substituting Eq. (93) together with (100) into (47), one can obtain the singular principal part of T(r )

ahead of the crack tip �x10 � bn). The result is

T�r� � VhhX a
0�x1�iiP�x1� �109�

where r means the distance from the crack-tip; x1 � bn � r; and

V �
ÿ
I� ÅH

ÿ1
H
�
�Q� R�

R � ÿ 1

CD
Qhh 1

1� e2pea
iiQÿ1i4H4Q

Thus, the ®eld intensity factor vector may be de®ned as

k � �kII, kI, kIII, kD �T� lim
r40

�������
2pr
p

VhhrieaihhX a
0�x1�iiP�x1 � �110�

Observing Eqs. (110) and (52), one can ®nd that k is related to cn, while (102) and (103) show that cn
are independent of the applied electric loads. This implies that in general cases, the singularities of the
stress and electric displacement depend only on the applied mechanical loads and the material constants.

As an example, consider a case of a crack which is located in [ÿa, a ]. In this case, a1 � ÿa, b1 � a,
and

X a
0�z� �

1����������������
z2 ÿ a2
p

�
z� a

zÿ a

�iea

�111�

P�z� � cNz �N � 1� �112�

C.-F. Gao, M.-Z. Wang / International Journal of Solids and Structures 37 (2000) 4969±49864982



Substituting Eqs. (111) and (112) into (110), one obtains

ks�a� �
������
pa
p

Vhh�2a�ieaiiQÿ1s1M �113�
For the case of a homogeneous medium, one has

ea � 0, Q � I, CD � 1

2
H44 �114�

R � ÿ 1

H44

2664
0 0 0 0
0 0 0 0
0 0 0 0
H41 H42 H43 H44

3775, V � 2

2666664
1 0 0 0
0 1 0 0
0 0 1 0

ÿH41

H44
ÿH42

H44
ÿH43

H44
0

3777775 �115�

Inserting Eqs. (114) and (115) into (113) gives

kI �
������
pa
p

s122, kII �
������
pa
p

s121, kIII �
������
pa
p

s123

kD � ÿ 1

H44

X3
j�1

H4js12j �116�

which are consistent with those of Gao and Fan (1998), who analyzed an elliptic hole problem in
piezoelectric media by use of the Stroh formalism and exact boundary conditions. However, if the
impermeable crack assumption is used, one has kD �

������
pa
p

D12 (e.g., Suo et al., 1992). This means that
the impermeable crack assumption may lead to erroneous results for the crack problem in piezoelectric
media.

5. Conclusions

Based on the Stroh formalism, a theoretical study is done on the two-dimensional problems of N
collinear permeable cracks between two dissimilar piezoelectric solids subjected to uniform loads at
in®nity. Exact and explicit solutions are presented both in the solids and inside the cracks. From these
results, several conclusions may be reached:

1. Near the permeable crack-tips, the structure of singular ®elds is the same as that near the
impermeable crack-tips. However, for the case of a permeable crack all the ®eld singularities are
dependent on the material constants and the applied mechanical loads, but not on the applied electric
loads.

2. In general cases, the electric ®eld inside interfacial cracks depends on the material constants, the
applied loads and dielectric constant of air. Moreover, it can be singular and oscillatory when
approaching the crack tips. For the case of a homogeneous piezoelectric medium with cracks, the
electric ®eld inside any crack equals a constant.

3. All the ®eld variables in piezoelectric media are independent of dielectric constant of air or vacuum
inside cracks.

4. In order to ensure the deformation of the upper and lower half-space compatible, the loads applied at
in®nity has to satisfy certain condition, which is given in appendix.
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Appendix A. The condition of loading at in®nity

Consider a piezoelectric solid in a ®xed rectangular coordinate system xj �j � 1, 2, 3�: Taking stresses
skl and electric displacement Dk as independent variables, the constitutive equations can be expressed as
(Berlincourt et al., 1964)

eij � sijklskl � gkijDk, ÿ Ei � giklskl ÿ bikDk �i, k, l � 1, 2, 3� �A1�
where sijkl, gkij and bik are elastic constants, piezoelectric constants and dielectric constants, respectively.
For simplicity, introduce the engineering notation of stress and strain as follows:

s1 � s11, s2 � s22, s3 � s33, s4 � s23, s5 � s13, s6 � s12

e1 � e11, e2 � e22, e3 � e33, e4 � 2e23, e5 � 2e13, e6 � 2e12

Then, (A1) can be rewritten in the matrix form as

e � ss� gTD, ÿ E � gsÿ bD �A2�
For the generalized 2D problem, uj and j are dependent only on x1 and x2 such that

e3 � 0, E3 � 0 �A3�
Using Eq. (A2), Eq. (A3) gives

s31s1 � � � � � s36s6 � g13D1 � g23D2 � g33D3 � 0 �A4�

g31s1 � � � � � g36s6 ÿ b31D1 ÿ b32D2 ÿ b33D3 � 0 �A5�
Solving s3 and D3 from Eqs. (A4) and (A5), one obtains

s3 � ÿ 1

s33b33 � g2
33

24 X6
j�1, 6�3

ÿ
b33s3j � g33g3j

�
sj �

X2
k�1

ÿ
b33g3k ÿ g33b3k

�
Dk

35 �A6�

D3 � ÿ 1

s33b33 � g2
33

24 X6
j�1, 6�3
�g33s3j ÿ s33g3j �sj �

X2
k�1

ÿ
s33b3k � g33g3k

�
Dk

35 �A7�

Inserting Eqs. (A6) and (A7) into (A2), one has

e1 � e11 � a11s1 � a12s2 � a14s4 � a15s5 � a16s6 � b11D1 � b12D2 �A8�
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e5 � 2e13 � a51s1 � a52s2 � a54s4 � a55s5 � a56s6 � b15D1 � b25D2 �A9�

ÿE1 � b11s1 � b12s2 � b14s4 � b15s5 � b16s6 ÿ d11D1 ÿ d12D2 �A10�

where

aij � sij ÿ si3sj3b33 � si3g3jg33 � s3jg3ig33 ÿ s33g3ig3j

s33b33 � g2
33

�i, j � 1, 2, 4, 5, 6�

bij � gij ÿ s3jgi3b33 ÿ s3jg33bi3 � gi3g3jg33 � s33g3jbi3
s33b33 � g2

33

�i, j � 1, 2, 4, 5, 6�

dij � bij ÿ
gi3gj3b33 ÿ gi3bj3g33 ÿ bi3gj3g33 ÿ s33bi3bj3

s33b33 � g2
33

�i, j � 1, 2�

Mathematically, the upper and lower half-spaces come together at in®nity, and therefore the following
continuous conditions hold:ÿ

e111
�
1
� ÿe111�2, ÿe113 �1� ÿe113�2, ÿE11 �1� ÿE11 �2 �A11�

Substituting Eqs. (A8)±(A10) into (A11), one can obtain24 a11 a15 b11
a15 a55 b51
b11 b51 ÿd11

35
1

8<:s111
s131
D11

9=;
1

ÿ
24 a11 a15 b11
a15 a55 b51
b11 b51 ÿd11

35
2

8<:s111
s131
D11

9=;
2

�

0B@
24 a16
a56
b16

35
2

ÿ
24 a16
a56
b16

35
1

1CAs121 �

0B@
24 a12
a52
b12

35
2

ÿ
24 a12
a52
b12

35
1

1CAs122

�

0B@
24 a14
a54
b14

35
2

ÿ
24 a14
a54
b14

35
1

1CAs123 �
0B@
24 b12
b52
ÿd12

35
2

ÿ
24 b12
b52
ÿd12

35
1

1CAD12

�A12�

which is the condition of loading at in®nity.
If neglecting the terms related to electric variables, (A12) reduces�

a11 a15
a15 a55

�
1

�
s111
s131

�
1

ÿ
�
a11 a15
a15 a55

�
2

�
s111
s131

�
2

�
 �

a16
a56

�
2

ÿ
�
a16
a56

�
1

!
s121 �

 �
a12
a52

�
2

ÿ
�
a12
a52

�
1

!
s122 �

 �
a14
a54

�
2

ÿ
�
a14
a54

�
1

!
s123 �A13�

which is consistent to the result of Chen and Hsu (1997). However, the derivation here is very explicit
and concise.
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